148 research outputs found

    The Resource constrained shortest path problem implemented in a lazy functional language

    Get PDF
    The resource constrained shortest path problem is an NP-hard problem for which many ingenious algorithms have been developed. These algorithms are usually implemented in FORTRAN or another imperative programming language. We have implemented some of the simpler algorithms in a lazy functional language. Benefits accrue in the software engineering of the implementations. Our implementations have been applied to a standard benchmark of data files, which is available from the Operational Research Library of Imperial College, London. The performance of the lazy functional implementations, even with the comparatively simple algorithms that we have used, is competitive with a reference FORTRAN implementation

    Teaching Engineering students to "Think thief"

    Get PDF
    We report on an educational experiment where information technology students were encouraged to think out of the box about the dark side of information technology. Instead of taking the usual point of view of the engineer we challenged the students to take the point of view of the motivated offender. After teaching the course three years, we report on the exciting ideas our students came up with, and on the lessons we learned in designing and teaching the course. The main conclusions are (a) thinking thief inspires students to design creative projects, (b) working with real subjects creates a powerful learning experience, and (c) students are struggling with methodological issues

    Energy-Efficient Streaming Using Non-volatile Memory

    Get PDF
    The disk and the DRAM in a typical mobile system consume a significant fraction (up to 30%) of the total system energy. To save on storage energy, the DRAM should be small and the disk should be spun down for long periods of time. We show that this can be achieved for predominantly streaming workloads by connecting the disk to the DRAM via a large non-volatile memory (NVM). We refer to this as the NVM-based architecture (NVMBA); the conventional architecture with only a DRAM and a disk is referred to as DRAMBA. The NVM in the NVMBA acts as a traffic reshaper from the disk to the DRAM. The total system costs are balanced, since the cost increase due to adding the NVM is compensated by the decrease in DRAM cost. We analyze the energy saving of NVMBA, with NAND flash memory serving as NVM, relative to DRAMBA with respect to (1) the streaming demand, (2) the disk form factor, (3) the best-effort provision, and (4) the stream location on the disk. We present a worst-case analysis of the reliability of the disk drive and the flash memory, and show that a small flash capacity is sufficient to operate the system over a year at negligible cost. Disk lifetime is superior to flash, so that is of no concern

    Information Security

    Get PDF

    How migrating 0.0001% of address space saves 12% of energy in hybrid storage

    Get PDF
    We present a simple, operating-\ud system independent method to reduce the num-\ud ber of seek operations and consequently reduce\ud the energy consumption of a hybrid storage\ud device consisting of a hard disk and a ļ¬‚ash\ud memory. Trace-driven simulations show that\ud migrating a tiny amount of the address space\ud (0.0001%) from disk to ļ¬‚ash already results\ud in a signiļ¬cant storage energy reduction (12%)\ud at virtually no extra cost. We show that the\ud amount of energy saving depends on which part\ud of the address space is migrated, and we present\ud two indicators for this, namely sequentiality and\ud request frequency. Our simulations show that\ud both are suitable as criterion for energy-saving\ud ļ¬le placement methods in hybrid storage. We\ud address potential wear problems in the ļ¬‚ash\ud subsystem by presenting a simple way to pro-\ud long its expected lifetime.\u

    Architecture-based Qualitative Risk Analysis for Availability of IT Infrastructures

    Get PDF
    An IT risk assessment must deliver the best possible quality of results in a time-eļ¬€ective way. Organisations are used to customise the general-purpose standard risk assessment methods in a way that can satisfy their requirements. In this paper we present the QualTD Model and method, which is meant to be employed together with standard risk assessment methods for the qualitative assessment of availability risks of IT architectures, or parts of them. The QualTD Model is based on our previous quantitative model, but geared to industrial practice since it does not require quantitative data which is often too costly to acquire. We validate the model and method in a real-world case by performing a risk assessment on the authentication and authorisation system of a large multinational company and by evaluating the results w.r.t. the goals of the stakeholders of the system. We also perform a review of the most popular standard risk assessment methods and an analysis of which one can be actually integrated with our QualTD Model

    Scheduling Optimisations for SPIN to Minimise Buffer Requirements in Synchronous Data Flow:(with appendix)

    Get PDF
    Synchronous Data flow (SDF) graphs have a simple and elegant semantics (essentially linear algebra) which makes SDF graphs eminently suitable as a vehicle for studying scheduling optimisations. We extend related work on using SPIN to experiment with scheduling optimisations aimed at minimising buffer requirements. We show that for a benchmark of commonly used case studies the performance of our SPIN based scheduler is comparable to that of state of the art research tools. The key to success is using the semantics of SDF to prove when using (even unsound and/or incomplete) optimisations are justified. The main benefit of our approach lies in gaining deep insight in the optimisations at relatively low cost
    • ā€¦
    corecore